1(i) ⇒	$f'(x) = \frac{(x^2 + 1)4x - (2x^2 - 1)2x}{(x^2 + 1)^2}$ $= \frac{4x^3 + 4x - 4x^3 + 2x}{(x^2 + 1)^2} = \frac{6x}{(x^2 + 1)^2} *$ When $x > 0$, $6x > 0$ and $(x^2 + 1)^2 > 0$ $f'(x) > 0$	M1 A1 E1 M1 E1 [5]	Quotient or product rule correct expression www attempt to show or solve $f'(x) > 0$ numerator > 0 and denominator > 0 or, if solving, $6x > 0 \Rightarrow x > 0$
(ii)	$f(2) = \frac{8-1}{4+1} = 1\frac{2}{5}$ Range is $-1 \le y \le 1\frac{2}{5}$	B1 B1 [2]	must be \leq , <i>y</i> or f(<i>x</i>)
$(\mathbf{i}\mathbf{i}\mathbf{i}) \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \end{cases}$	f'(x) max when f''(x) = 0 6 - 18 x ² = 0 x ² = 1/3, x = 1/\sqrt{3} f'(x) = $\frac{6/\sqrt{3}}{(1\frac{1}{3})^2} = \frac{6}{\sqrt{3}} \cdot \frac{9}{16} = \frac{9\sqrt{3}}{8} = 1.95$	M1 A1 M1 A1 [4]	(±) $1/\sqrt{3}$ oe (0.577 or better) substituting $1/\sqrt{3}$ into f'(<i>x</i>) $9\sqrt{3}/8$ o.e. or 1.95 or better (1.948557)
(iv)	Domain is $-1 < x < 1\frac{2}{5}$ Range is $0 \le y \le 2$	B1 B1 M1 A1 cao [4]	ft their 1.4 but not $x \ge -1$ or $0 \le g(x) \le 2$ (not f) Reasonable reflection in $y = x$ from (-1, 0) to (1.4, 2), through (0, $\sqrt{2}/2$) allow omission of one of -1, 1.4, 2, $\sqrt{2}/2$
(\mathbf{v}) \Rightarrow \Rightarrow \Rightarrow \Rightarrow	$y = \frac{2x^2 - 1}{x^2 + 1} x \leftrightarrow y$ $x = \frac{2y^2 - 1}{y^2 + 1}$ $xy^2 + x = 2y^2 - 1$ $x + 1 = 2y^2 - xy^2 = y^2(2 - x)$ $y^2 = \frac{x + 1}{2 - x}$ $y = \sqrt{\frac{x + 1}{2 - x}} *$	M1 M1 M1 E1 [4]	(could start from g) Attempt to invert clearing fractions collecting terms in y^2 and factorising www

$2'(i) \frac{2}{3}x^{-1/3} + \frac{2}{3}y^{-1/3}\frac{dy}{dx} = 0$	M1 A1	Implicit differentiation (must show = 0)
$\Rightarrow \qquad \frac{dy}{dx} = -\frac{\frac{2}{3}x^{-1/3}}{\frac{2}{3}y^{-1/3}}$	M1	solving for dy/dx
$= -\frac{y^{1/3}}{x^{1/3}} = -\left(\frac{y}{x}\right)^{\frac{1}{3}} *$	E1 [4]	www. Must show, or explain, one more step.
(ii) $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$ = $-\left(\frac{8}{1}\right)^{\frac{1}{3}} \cdot 6$	M1 A1	any correct form of chain rule
=-12	A1cao [3]	

3 (i)	Stretch in <i>x</i> -direction s.f. translation in <i>y</i> -direction 1 unit up	M1 A1 M1 A1 [4]	(in either order) – allow 'contraction' dep 'stretch' allow 'move', 'shift', etc – direction can be inferred from $\begin{pmatrix} 0\\1 \end{pmatrix}$ or $\begin{pmatrix} 0\\1 \end{pmatrix}$ dep 'translation'. $\begin{pmatrix} 0\\1 \end{pmatrix}$ alone is M1 A0
(ii)	$A = \int_{-\pi/4}^{\pi/4} (1 + \sin 2x) dx$ = $\left[x - \frac{1}{2} \cos 2x \right]_{-\pi/4}^{\pi/4}$ = $\pi/4 - \frac{1}{2} \cos \frac{\pi}{2} + \frac{\pi}{4} + \frac{1}{2} \cos \frac{(-\pi/2)}{2}$ = $\pi/2$	M1 B1 M1 A1 [4]	correct integral and limits. Condone dx missing; limits may be implied from subsequent working. substituting their limits (if zero lower limit used, must show evidence of substitution) or 1.57 or better – cao (www)
(iii) ⇒	$y = 1 + \sin 2x$ $dy/dx = 2\cos 2x$ When $x = 0$, $dy/dx = 2$ So gradient at (0, 1) on f(x) is 2 gradient at (1, 0) on f ⁻¹ (x) = $\frac{1}{2}$	M1 A1 A1ft B1ft [4]	differentiating – allow 1 error (but not $x + 2\cos 2x$) If 1, then must show evidence of using reciprocal, e.g. 1/1
(iv)	Domain is $0 \le x \le 2$.	B1 M1 A1 [3]	Allow 0 to 2, but not $0 < x < 2$ or <i>y</i> instead of <i>x</i> clear attempt to reflect in $y = x$ correct domain indicated (0 to 2), and reasonable shape
(\mathbf{v}) \Rightarrow \Rightarrow \Rightarrow	$y = 1 + \sin 2x \ x \leftrightarrow y$ $x = 1 + \sin 2y$ $\sin 2y = x - 1$ $2y = \arcsin(x - 1)$ $y = \frac{1}{2} \arcsin(x - 1)$	M1 A1 [2]	or $\sin 2x = y - 1$ cao