$\text { 1(i) } \begin{aligned} & \mathrm{f}^{\prime}(x)=\frac{\left(x^{2}+1\right) 4 x-\left(2 x^{2}-1\right) 2 x}{\left(x^{2}+1\right)^{2}} \\ &=\frac{4 x^{3}+4 x-4 x^{3}+2 x}{\left(x^{2}+1\right)^{2}}=\frac{6 x}{\left(x^{2}+1\right)^{2}} * \\ & \Rightarrow \quad \text { When } x>0,6 x>0 \text { and }\left(x^{2}+1\right)^{2}>0 \end{aligned}$	M1 A1 E1 M1 E1 [5]	Quotient or product rule correct expression www attempt to show or solve $\mathrm{f}^{\prime}(x)>0$ numerator >0 and denominator >0 or, if solving, $6 x>0 \Rightarrow x>0$
$\begin{aligned} & \text { (ii) } \mathrm{f}(2)=\frac{8-1}{4+1}=1 \frac{2}{5} \\ & \quad \text { Range is }-1 \leq y \leq 1 \frac{2}{5} \end{aligned}$	B1 B1 [2]	must be \leq, y or $\mathrm{f}(x)$
$\begin{array}{ll} \text { (iii) } & \mathrm{f}^{\prime}(x) \max \text { when } \mathrm{f}^{\prime \prime}(x)=0 \\ \Rightarrow & 6-18 x^{2}=0 \\ \Rightarrow & x^{2}=1 / 3, x=1 / \sqrt{3} \\ \Rightarrow & \mathrm{f}^{\prime}(x)=\frac{6 / \sqrt{3}}{\left(1 \frac{1}{3}\right)^{2}}=\frac{6}{\sqrt{3}} \cdot \frac{9}{16}=\frac{9 \sqrt{3}}{8}=1.95 \end{array}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	(\pm) $1 / \sqrt{ } 3$ oe (0.577 or better) substituting $1 / \sqrt{3}$ into $\mathrm{f}^{\prime}(x)$ $9 \sqrt{ } 3 / 8$ o.e. or 1.95 or better (1.948557..)
(iv) Domain is $-1<x<1 \frac{2}{5}$ Range is $0 \leq y \leq 2$	B1 B1 M1 A1 cao [4]	ft their 1.4 but not $x \geq-1$ $\text { or } 0 \leq \mathrm{g}(\mathrm{x}) \leq 2(\text { not } \mathrm{f})$ Reasonable reflection in $y=x$ from $(-1,0)$ to $(1.4,2)$, through $(0, \sqrt{ } 2 / 2)$ allow omission of one of $-1,1.4,2, \sqrt{2} / 2$
$\begin{array}{ll} \text { (v) } & y=\frac{2 x^{2}-1}{x^{2}+1} \quad x \leftrightarrow y \\ & x=\frac{2 y^{2}-1}{y^{2}+1} \\ \Rightarrow & x y^{2}+x=2 y^{2}-1 \\ \Rightarrow & x+1=2 y^{2}-x y^{2}=y^{2}(2-x) \\ \Rightarrow & y^{2}=\frac{x+1}{2-x} \\ \Rightarrow & y=\sqrt{\frac{x+1}{2-x}} *^{*} \end{array}$	M1 M1 M1 E1 [4]	(could start from g) Attempt to invert clearing fractions collecting terms in y^{2} and factorising www

$\begin{aligned} \text { 2' } \left.^{\prime} \mathbf{i}\right) & \frac{2}{3} x^{-1 / 3}+\frac{2}{3} y^{-1 / 3} \frac{d y}{d x}=0 \\ \Rightarrow \quad \frac{d y}{d x} & =-\frac{\frac{2}{3} x^{-1 / 3}}{\frac{2}{3} y^{-1 / 3}} \\ & =-\frac{y^{1 / 3}}{x^{1 / 3}}=-\left(\frac{y}{x}\right)^{\frac{1}{3}} * \end{aligned}$	M1 A1 M1 E1 [4]	Implicit differentiation (must show $=0$) solving for $\mathrm{d} y / \mathrm{d} x$ www. Must show, or explain, one more step.
$\text { (ii) } \begin{aligned} \frac{d y}{d t} & =\frac{d y}{d x} \cdot \frac{d x}{d t} \\ & =-\left(\frac{8}{1}\right)^{\frac{1}{3}} \cdot 6 \\ & =-12 \end{aligned}$	M1 A1 Alcao [3]	any correct form of chain rule

$3 \text { (i) }$	Stretch in x-direction s.f. translation in y-direction 1 unit up	M1 A1 M1 A1 [4]	(in either order) - allow 'contraction' dep 'stretch' allow 'move', 'shift', etc - direction can be inferred from $\binom{0}{1}$ or $\binom{0}{1}$ dep 'translation'. $\binom{0}{1}$ alone is M1 A0
	$\begin{aligned} & A=\int_{-\pi / 4}^{\pi / 4}(1+\sin 2 x) d x \\ & =\left[x-\frac{1}{2} \cos 2 x\right]_{-\pi / 4}^{\pi / 4} \\ & =\pi / 4-1 / 2 \cos \pi / 2+\pi / 4+1 / 2 \cos (-\pi / 2) \\ & =\pi / 2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	correct integral and limits. Condone $\mathrm{d} x$ missing; limits may be implied from subsequent working. substituting their limits (if zero lower limit used, must show evidence of substitution) or 1.57 or better - cao (www)
(iii) \Rightarrow \Rightarrow	$\begin{aligned} & y=1+\sin 2 x \\ & \text { dy } y / \mathrm{d} x=2 \cos 2 x \\ & \text { When } x=0 \text {, dy} / \mathrm{d} x=2 \\ & \text { So gradient at }(0,1) \text { on } \mathrm{f}(x) \text { is } 2 \\ & \text { gradient at }(1,0) \text { on } \mathrm{f}^{-1}(x)=1 / 2 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \\ \text { A1ft } \\ \text { B1ft } \\ {[4]} \end{gathered}$	differentiating - allow 1 error (but not $x+2 \cos 2 x$) If 1 , then must show evidence of using reciprocal, e.g. $1 / 1$
(iv)	Domain is $0 \leq x \leq 2$.	B1 M1 A1 [3]	Allow 0 to 2, but not $0<x<2$ or y instead of x clear attempt to reflect in $y=x$ correct domain indicated (0 to 2), and reasonable shape
(v) \Rightarrow \Rightarrow \Rightarrow	$\begin{aligned} & y=1+\sin 2 x \quad x \leftrightarrow y \\ & x=1+\sin 2 y \\ & \sin 2 y=x-1 \\ & 2 y=\arcsin (x-1) \\ & y=1 / 2 \arcsin (x-1) \end{aligned}$	M1 A1 [2]	or $\sin 2 x=y-1$ cao

